
WorkFlow Package Manager
Release 0.8.0

Junjun Zhang

Jan 14, 2022

CONTENTS:

1 WorkFlow Package Manager - Overview 1
1.1 Best practices for scientific workflow development . 1
1.2 ICGC ARGO workflow implementation . 2
1.3 Installation . 2
1.4 Demo use cases . 3

2 Basic Concepts 7
2.1 About WFPM projects . 7
2.2 About packages . 8
2.3 About modules . 8
2.4 Package releases . 8
2.5 Permissible string patterns for artifact names . 9
2.6 Dependencies . 9

3 WFPM CLI General Usage 11
3.1 WFPM CLI overview . 11
3.2 Initialize a WFPM project . 11
3.3 Create a new tool package . 12
3.4 Create a new workflow package . 14
3.5 Release a package . 15
3.6 Update an existing package . 16
3.7 Switch between in-dev packages . 16

i

ii

CHAPTER

ONE

WORKFLOW PACKAGE MANAGER - OVERVIEW

The WFPM CLI is a command line tool for workflow package authoring and management, it’s developed in Python
and runs on a Linux or Mac OS environment. WFPM CLI provides assistance to write shareable/reusable workflow
packages. A package can include one or more of these items: a single step tool (aka process in Nextflow), a function
or a workflow with multiple steps chained together.

We get a lot of inspiration from NPM (node package manager), which is one of the most successful package mange-
ment systems. The bioinformatics workflow development community would greatly appreciate something like NPM
to facilitate and accelerate collaborative development via reusable packages.

NOTE: WFPM CLI is in active development. More features, documentation and tutorials are coming.

• Documentation: https://wfpm.readthedocs.io

• Source code: https://github.com/icgc-argo/wfpm

• Talk at BOSC 2021 (including demo): talk; slides.

• Blog: Build workflows collaboratively using reusable and shareable packages

1.1 Best practices for scientific workflow development

• Reproducible - same input, same code, same result

– containerize all software tools (including scripts, binary executables) and specific OS environment

– tag every image build and associate it with workflow source code release

• Portable - run on different platforms, by different users

– containerize all software tools (containerization appeared again, it is a good friend :blush:)

– use cross-platform workflow languages and orchestration systems, eg, Nextflow, WDL etc

• Composable - enable collaborative development

– break down big tasks into small tasks (each carried out by a small software tool)

– one tool per container image

– version and release independently every tool and its associated container image

– a released tool is immutable and can be imported into any workflow where it is needed

– a workflow can also be imported as sub-workflow to build a larger workflow

– similar to tools, workflows are versioned, immutable once released

• Findable - easy to find by research community members

1

https://www.nextflow.io/
https://docs.npmjs.com/about-npm
https://wfpm.readthedocs.io
https://github.com/icgc-argo/wfpm
https://www.youtube.com/watch?v=kOC6SH0GFPQ
https://docs.google.com/presentation/d/1uEcAYvUvjyFptOT_BD-vkhXnhQoFO5X8RulxORTGubY/edit?usp=sharing
https://softeng.oicr.on.ca/junjun_zhang/2021/03/31/build-workflows-collaboratively-using-packages

WorkFlow Package Manager, Release 0.8.0

– register components and workflows in public tool registries, such as Dockstore, BioContainers etc

– release workflow source code via GitHub Releases

• Testable - deliver with high confidence

– must have tests for every tool, component and workflow

– configure and enable continuous integration testing

1.2 ICGC ARGO workflow implementation

Sometime around August 2019, ICGC ARGO started to experiment a modular approach to create workflows using
individual analytic tools as reusable building blocks with each tool completely self-contained and independently de-
veloped, tested and released. As each tool being fairly small and well decoupled from others, it gave the team high
confidence in developing and delivering the tools. Importing a specific version of a tool into a workflow codebase was
extremely easy, we were able to reuse same tools in different workflows (residing in different code repositories) for
common steps without duplicating a single line of code. In subsequent months, prototyping and testing assured us this
was the right approach. Eventually, the aforementioned best practices were established, following which four ICGC
ARGO production workflows have been implemented:

• DNA Sequence Alignment Workflow

• Sanger WGS Somatic Variant Calling Workflow

• Sanger WXS Somatic Variant Calling Workflow

• GATK Mutect2 Somatic Variant Calling Workflow

Before having the WFPM CLI tool, a development procedure was followed manually to ensure adherence to the best
practices, which was undoubtedly cumbersome and error-prone. Aimed to provide maximized automation and devel-
opment productivity, the WFPM CLI tool is able to generate templates that include starter workflow code, code for
testing, and GitHub Actions code for automated continuous integration (CI) and continuous delivery (CD). We expect
WFPM to significantly lower the barriers for scientific workflow developers to adopt the established best practices and
accelerate collaborative workflow development within the ICGC ARGO community and beyond.

1.3 Installation

1.3.1 Prerequisites

Please ensure the following prerequisites are met before moving on to installation.

python >= 3.6
pip >= 20.0 (only required for installation)
bash >= 3.2
git >= 2.0
nextflow >= 20.10
docker >= 19.0

2 Chapter 1. WorkFlow Package Manager - Overview

https://github.com/icgc-argo-workflows/dna-seq-processing-wfs
https://github.com/icgc-argo-workflows/sanger-wgs-variant-calling
https://github.com/icgc-argo-workflows/sanger-wxs-variant-calling
https://github.com/icgc-argo-workflows/gatk-mutect2-variant-calling
https://github.com/icgc-argo/dna-seq-processing-tools/blob/c58a6fa3bae998a7a12778bc2950acd4776de314/README.md#development

WorkFlow Package Manager, Release 0.8.0

1.3.2 Install WFPM CLI with only a single command

pip install wfpm

To update to the latest version, run pip install --upgrade wfpm

To show usage information of WFPM CLI, run wfpm --help, or simply wfpm

1.4 Demo use cases

We present here step-by-step instructions how to use wfpm to create Nextflow DSL2 workflow packages.

Our objective is to create a workflow that uses FASTQC tool to produce QC metrics for input sequencing reads.
A utility cleanupWorkdir tool is also used to remove unneeded intermediate files. The diagram below il-
lustrates how the workflow is structured, basically, workflow package demo-fastqc-wf@0.2.0 contains two
tool packages: demo-fastqc@0.2.0 and demo-utils@1.3.0. We will be creating demo-fastqc@0.2.0 and
demo-fastqc-wf@0.2.0 while demo-utils@1.3.0 is already available, we just need to import it as a dependency.

The packages created by the demo cases can be found at: https://github.com/ICGC-TCGA-PanCancer/
awesome-wfpkgs1/releases/tag/demo-fastqc.v0.2.0 and https://github.com/ICGC-TCGA-PanCancer/
awesome-wfpkgs2/releases/tag/demo-fastqc-wf.v0.2.0 for your reference.

NOTE: You are encouraged to follow these steps to create your own tool / workflow packages. Simply replacing the
GitHub organization ICGC-TCGA-PanCancer used here by your own GitHub account, it should just work.

1.4. Demo use cases 3

https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs1/releases/tag/demo-fastqc.v0.2.0
https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs1/releases/tag/demo-fastqc.v0.2.0
https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs2/releases/tag/demo-fastqc-wf.v0.2.0
https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs2/releases/tag/demo-fastqc-wf.v0.2.0

WorkFlow Package Manager, Release 0.8.0

1.4.1 Demo use case 1: create and publish a demo tool package

1. Prepare a GitHub repository

Before you start, please make sure you create a repository with name at your choice (in the demo let’s use
awesome-wfpkgs1) under a GitHub organization account you have admin access or your personal account (here we
use ICGC-TCGA-PanCancer).

You also need to create a Personal Access Token (PAT) in order to access GitHub Container Registry, follow these steps:
your account => Settings => Developer settings => Personal access tokens => Generate new token.
Please select write:packages scope for the token.

Once PAT is created, please copy the token and add it to the repository you created above. Here are the steps to go
through: Settings (under the repository page) => Secrets => New repository secret. For name, please use
CR_PAT, value is the PAT you just created.

GitHub Actions greatly helps continuous integration (CI) and continuous delivery (CD) automation. CI/CD is an inte-
gral part of the workflow package development life cycle. To enable GitHub Actions for your organization: Settings
=> Actions => Allow all actions. WFPM CLI generated workflow package templates include all necessary com-
ponents to perform CI/CD with no work required from you.

1. Initialize a project directory for developing/managing packages

wfpm init

Please follow the prompt to provide necessary information. Most important information includes Project name
(this is also the GitHub repo name, please make sure it matches what you have created at step 1. Here we use
awesome-wfpkgs1) and GitHub account (we use ICGC-TCGA-PanCancer). Once completed, you should see some-
thing similar as below:

Project initialized in awesome-wfpkgs1
Git repo initialized and first commit done. When ready, you may push to github.com using:
git push -u origin main

When you are ready, as suggested above you can push the code to GitHub. Upon push received at GitHub, CI/CD
process will be automatically triggered. You should see CI tests pass, which indicates everything went well.

1. Create your first tool package

wfpm new tool demo-fastqc

We use the bioinformatics tool fastqc as an example here. You can pretty much use the default values in
the prompt to advance forward, except for using 0.2.0 for package version. Upon completion, you should see
a message like New package created in: demo-fastqc. Starting template added and committed to
git. Please continue working on it. Template code is added to the demo-fastqc@0.2.0 branch, and WFPM
CLI sets the newly created package as currently worked on package, you may verify it by running:

wfpm workon

You should see the following message:

Packages released: <none>
Packages in development:
demo-fastqc: 0.2.0

Package being worked on: demo-fastqc@0.2.0

4 Chapter 1. WorkFlow Package Manager - Overview

WorkFlow Package Manager, Release 0.8.0

When creating your own package, the generated package template gives you the starting point, change the code as
needed. In this demo, the generated demo-fastqc pacakge is already fully functional, we will just push the code to
GitHub:

git push -u origin demo-fastqc@0.2.0

Upon receiving the push, GitHub will automatically start CI/CD via GitHub Actions. If the test passes, you may create
a Pull Request (PR) against the main branch to start the reviewing process.

NOTE: a newly created GitHub container image by default is private, you will need Admin access to make it public
so that anyone is able to pull the image. In this demo case, it can be done on this page: https://github.com/orgs/
ICGC-TCGA-PanCancer/packages/container/awesome-wfpkgs1.demo-fastqc/settings (change the URL as needed to
match your org and repo), click on Change Visibility, then choose Public and confirm.

1. Publish your first tool package

When you merge the above PR, as part of the comment, you may type a special instruction [release] to let GitHub Ac-
tions start the release process, as shown in the screenshot below. With this GitHub will first merge the demo-fastqc@0.
2.0 branch to the main branch, then starts the release process, once tests are successful, a release of your first tool
package will be made automatically.

The release should be available at: https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs1/releases/tag/
demo-fastqc.v0.2.0 and can be imported and used by anyone (of course including yourself) in their workflows. How to
do that? Please continue to the next demo use case.

1.4.2 Demo use case 2: create and publish a workflow package

In this demo we will be creating a new workflow package that makes use of the demo-fastqc tool package we
created in demo use case 1 (by now it has been released here) and another utility package published here: https:
//github.com/icgc-argo/demo-wfpkgs/releases/tag/demo-utils.v1.3.0

1. Prepare another GitHub repository

Similar to the first step of demo use case 1, create another repository (here we use awesome-wfpkgs2) in the same
GitHub organization, add a PAT to it as a secret and name it CR_PAT.

1. Initialize a project directory for developing/managing packages

wfpm init

Same as in the previous demo, following the prompt to provide necessary information of the new project. For Project
name and GitHub account, we use awesome-wfpkgs2 and ICGC-TCGA-PanCancer respectively for this demo.

Upon completion, the scaffold of our second project will be generated and first git commit will be done automatically.
You may push the code to GitHub once verified everything is fine.

1. Create your first workflow package

Let’s name the first workflow package demo-fastqc-wf:

1.4. Demo use cases 5

https://github.com/orgs/ICGC-TCGA-PanCancer/packages/container/awesome-wfpkgs1.demo-fastqc/settings
https://github.com/orgs/ICGC-TCGA-PanCancer/packages/container/awesome-wfpkgs1.demo-fastqc/settings
https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs1/releases/tag/demo-fastqc.v0.2.0
https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs1/releases/tag/demo-fastqc.v0.2.0
https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs1/releases/tag/demo-fastqc.v0.2.0
https://github.com/icgc-argo/demo-wfpkgs/releases/tag/demo-utils.v1.3.0
https://github.com/icgc-argo/demo-wfpkgs/releases/tag/demo-utils.v1.3.0

WorkFlow Package Manager, Release 0.8.0

wfpm new workflow demo-fastqc-wf

You may response most of the fields with the default values, except for using 0.2.0 for package version. Notice that
below are dependencies the new workflow requires. Please replace icgc-tcga-pancancer with your own GitHub
org name so the tool package you just released will be used.

• github.com/icgc-tcga-pancancer/awesome-wfpkgs1/demo-fastqc@0.2.0

• github.com/icgc-argo/demo-wfpkgs/demo-utils@1.3.0

wfpm will automatically install and test dependent packages in a temporary directory, once verified all
dependencies tested successfully, they will be copied over to the project space. You should see the
message: New package created in: demo-fastqc-wf. Starting template added and committed to
git. Please continue working on it. Template code is added to the demo-fastqc-wf@0.2.0 branch, and
WFPM CLI sets the newly created package as currently worked on package, you may verify it by running:

wfpm workon

The auto-generated workflow code is fully functional, you may invoke tests as:

wfpm test

This is equivalent to running the tests using Nextflow command directly:

cd demo-fastqc-wf/tests
nextflow run checker.nf -params-file test-job-1.json
nextflow run checker.nf -params-file test-job-2.json

You should see the test run successfully. We now simply push the code to GitHub:

git push -u origin demo-fastqc-wf@0.2.0

CI/CD process will be triggered on the new branch similar to demo 1. Once tests pass, you may create a PR as usual.

1. Publish your first workflow package

When merge the PR, type the special instruction [release] in the comment (similar as in the previous demo) to
trigger the CI/CD release process via GitHub Actions. Once released, the demo workflow package will be available at:
https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs2/releases/tag/demo-fastqc-wf.v0.2.0

1.4.3 Summary

By now, you should have a clear picture how WFPM CLI helps to create independent workflow packages and how these
packages may be used/reused as building blocks to build larger workflows.

In addition to the packages created by the demo use cases, some more packages are available at: https://github.com/icgc-
argo/demo-wfpkgs for your reference.

6 Chapter 1. WorkFlow Package Manager - Overview

https://github.com/ICGC-TCGA-PanCancer/awesome-wfpkgs2/releases/tag/demo-fastqc-wf.v0.2.0

CHAPTER

TWO

BASIC CONCEPTS

2.1 About WFPM projects

A WFPM project is a folder containing necessary WFPM configuration and workflow source code for WFPM packages.
A project may contain one or more packages.

As workflow source code is typically managed by version control systems, such as, Git. A source repository may contain
one and only one WFPM project. The WFPM project root directory is the root directory of its source repository. As
such, WFPM project shares the same name as the repository.

The following example shows a typical directory layout of a WFPM project. Here the project is named as
my-wfpm-project (same as the source code repository), which contains one WFPM package named demo-package.

my-wfpm-project # name of the WFPM project, also the repo name
.gitignore
.wfpm # WFPM project configuration file
.github

workflows
build-test-release.yml # GitHub Actions code for automated CI/CD

LICENSE
LICENSE-short
README.md
demo-package # folder for the package named 'demo-package'

pkg.json # pkg.json keeps basic package info
main.nf # package entry script
nextflow.config # package nextflow default configuration
modules # a package may optionally have local modules

<local_module_1>
<local_module_2>

tests # folder for tests
checker.nf # test launcher script
test-job-1.json # test job 1

wfpr_modules # folder to keep dependent packages
<dependent_package_1>
<dependent_package_2>
README.md

The project layout can be generated from the WFMP CLI tool, users don’t need to worry about creating it. More details
on creating WFPM project and package are available at WFPM CLI General Usage.

Note that even though a WFPM project may contain source code for multiple packages, each package will be developed,
tested and released independently to ensure clean decoupling, self-sufficiency and portability. More on this can be found
at Package releases.

7

usage.html#general-usage

WorkFlow Package Manager, Release 0.8.0

2.2 About packages

A package is a directory, described by a pkg.json file, containing one or more modules that can be imported into a
workflow codebase. pkg.json file records basic information of the package, such as: package name, version, main
entry point, source code repository etc. More information about pkg.json can be found at Create a new tool package.

A package can be in one of the following formats:

(a) a folder containing a pkg.json file and necessary workflow script file(s).

(b) a tarball containing (a).

(c) a URL that resolves to (b).

(d) a <repo_host_domain>/<repo_name>/<pkg_name>@<version> string represents a released package on
the source code control server with a release tag <pkg_name>.v<version>. A tarball named <pkg_name>.
v<version>.tar.gz as in (b) is available as a release asset for download.

(e) a <repo_host_domain>/<repo_name>/<pkg_name>@<version>_<commit_hash> string represents an in-
development package on the source code control server with the specified commit_hash on a branched named
<pkg_name>@<version>.

2.3 About modules

A module is a workflow script file that defines one or more of these items:

• A tool that is a single step of computation. It’s known as a process in Nextflow, a tool in CWL or a task in
WDL.

• A workflow that consists of one or more steps of computation, each of the steps is an execution of a tool
described in previous point.

• A function that takes inputs (in the form of variables: string, number, list, map etc), process them and return
a result, which is much the same as functions in any general-purpose programming languages. System built-in
functions are supported in Nextflow and WDL, however, only Nextflow supports user-defined functions.

tool, workflow and function are referenced by their names and are exposed via the package’s main entry script
defined in pkg.json that ultimately makes them ready to be imported into another workflow codebase.

2.4 Package releases

Packages are released via facilities provided by source code control systems, such as GitHub. For common software
releases, GitHub allows the user to choose a release version and write up release note, then it will create a Git tag
using the release version and generate two default release assets, ie, source code zip and tarball files.

Since a WFPM project source code repository may contain multiple packages, when a package is being released,
only source code artifacts related to the package to be released should be included in the release tarball. This
is achieved by a package release creation process as part of the GitHub Actions based continuous delivery (CD). The
release tarball is named as <package>.v<version>.tar.gz and made available as a release asset.

As another release asset, a pkg-release.json file is generated. In addition to information derived from pkg.json,
the pkg-release.json file also records the Git commit hash from which the release tag was made and the sha256
checksum of the release tarball. For tool packages, the associated container image sha256 digest is recorded as
well. This gives maximized transparency for reproducibility and safeguard against possible (accidental or deliberate)
alteration.

8 Chapter 2. Basic Concepts

usage.html#create-a-new-tool-package
https://github.com

WorkFlow Package Manager, Release 0.8.0

A package release tag is formed by combining package name and version string, as in <package>.v<version>. This
allows a single repository to support releases of multiple packages without interfering each other.

Note: semantic versioning is highly recommended for versioning your pacakges.

2.5 Permissible string patterns for artifact names

Artifact Pattern
project ^[a-z][0-9a-z\-]*[0-9a-z]+$
package ^[a-z][0-9a-z\-]*[0-9a-z]+$
tool ^[a-z][0-9a-z]+$
workflow ^[A-Z][0-9a-zA-Z]+$
function ^[a-z][0-9a-z]+$
version ^[0-9]+\.[0-9]+\.[0-9]+(?:\.[0-9]+)?(?:-[0-9a-z\.]+)?$
release tag <package>.v<version>
release tarbal <package>.v<version>.tar.gz
commit hash ^[0-9a-f]{8,}$
package URI <repo_host_domain>/<project>/<package>@<version>
dev package URI <repo_host_domain>/<project>/<package>@<version>_<commit_hash>

2.6 Dependencies

One of the major design goals of WFPM is to support workflow code reuse. Being able to import code developed by
others as dependencies is a native feature in many general-purpoase programming languages. All WFPM packages are
uniformly structured and well tested before releasing. This makes the packages readily importable into other users’
codebase. For the importer side, a package’s dependencies can be declared in the pkg.json file as shown in the
example below:

"dependencies": [
"github.com/icgc-argo/data-processing-utility-tools/payload-add-uniform-ids@0.1.1",
"github.com/icgc-argo/data-processing-utility-tools/helper-functions@1.0.0",
"github.com/icgc-argo/data-processing-utility-tools/cleanup-workdir@1.0.0"

]

Dependent packages are specified using their package URIs. To ensure maximized reproducibility, WFPM requires
specifying each dependency to a particular version.

Dependency installation is fully managed by the WFPM CLI tool. Before proceeding with installation, the CLI tool
resolves dependecies (and their dependencies recursively) to build a complete dependency graph. All dependencies
will be installed under wfpr_modules directory. At runtime, dependencies will be imported from this directory, no
need to fetch from any remote resources.

Note: Fun fact: WFPM supports multiple versions of the same package coexist as dependencies, thanks to the fact
WFPM requires importer always explicitly specify a particular version of any dependency. In WFPM, the well-known
diamond dependency problem is nonexistence.

Similar approach is taken by Go: The need for major version suffixes is one of the ways Go modules differs from most
other dependency management systems.

2.5. Permissible string patterns for artifact names 9

https://semver.org
https://www.well-typed.com/blog/2008/04/the-dreaded-diamond-dependency-problem
https://blog.golang.org/v2-go-modules

WorkFlow Package Manager, Release 0.8.0

10 Chapter 2. Basic Concepts

CHAPTER

THREE

WFPM CLI GENERAL USAGE

3.1 WFPM CLI overview

WFPM CLI is a command line tool that provides full lifecycle assistance to develop WFPM packages. For installation,
please follow the instruction here.

For general usage and available commands, just run wfpm with the --help option:

wfpm --help
Usage: wfpm [OPTIONS] COMMAND [ARGS]...

Options:
-d, --debug / --no-debug Show debug information in STDERR.
-v, --version Show wfpm version.
--help Show this message and exit.

Commands:
init Start a workflow package project with necessary scaffolds.
install Install dependencies for the package currently being worked on.
list List local and installed dependent packages.
new Start a new package with necessary scaffolds.
nextver Start a new version of a released or in development package.
outdated List outdated dependent packages.
test Run tests.
uninstall Uninstall packages.
workon Start work on a package, display packages released or in dev.

Usage info for each command is also available, for example, usage for the new command:

wfpm new --help

3.2 Initialize a WFPM project

To create a new WFPM project, please use the wfpm init command which will start an interactive step-by-step ques-
tionnaire to collect information for the new WFPM project. As the example showing below:

Please provide project information. Default value is in [] for each question, type your␣
→˓answer or hit enter to accept default.
? Project name / GitHub repo name (project_slug) [repo-name]: my-awesome-wfpm-project

(continues on next page)

11

README.html#installation

WorkFlow Package Manager, Release 0.8.0

(continued from previous page)

? Project title [Awesome Workflow Packages]:
? Organization or your GitHub account (under which source code is hosted) [github-
→˓account]: your-github-account
? Organization or your name (used as copyright owner in License) [Your Organization␣
→˓Name]:
? Open source license: MIT

A summary of the collected info will show before proceeding with project creation, it may look like the example below:

{
"project_slug": "my-awesome-wfpm-project",
"project_title": "Awesome Workflow Packages",
"github_account": "your-github-account",
"full_name": "Your Organization Name",
"open_source_license": "MIT"

}

With the above info, upon successful creation, the new WFPM project will be in a directory named as
my-awesome-wfpm-project. The directory layout should be similar to the example shown here. Essential info about
the project is kept in the .wfpm configuration file (in YAML format).

When the project template is created, WFPM CLI will also initialize the new directory to be a Git repository, add all
generated content to it and make the first commit.

After verifying everything is expected, you may push the source code to the remote repo server, ie, github.com. Note
that currently only GitHub is supported. Please create the repository named as my-awesome-wfpm-project under
your-github-account before running the following command:

git push -u origin main

Note that the default Git branch is main (not master).

3.3 Create a new tool package

3.3.1 Create starter templates

To create a new tool package, please make sure the current work dir is at the root of the WFPM project. Assuming
my-awesome-tool is the new tool package name, you may then run:

wfpm new tool my-awesome-tool

Similar to project creation, information about the new tool package will be collected step-by-step interactively. Assume
you’d like to start with a base docker image that contains the popular fastqc tool, you may specify pegi3s/fastqc:0.
11.9 as the base image. Most of the fields you may choose the provided default value. An example summary of the
collected info is shown below:

{
"full_name": "Your name",
"email": "you@example.com",
"pkg_version": "0.1.0",
"pkg_description": "My sequence QC tool",
"keywords": "bioinformatics, sequence, qc metrics",

(continues on next page)

12 Chapter 3. WFPM CLI General Usage

concepts.html#about-wfpm-projects

WorkFlow Package Manager, Release 0.8.0

(continued from previous page)

"docker_base_image": "pegi3s/fastqc:0.11.9",
"container_registry": "ghcr.io",
"registry_account": "your-github-account",
"dependencies": "",
"devDependencies": ""

}

Upon successful creation, you should see a message like below:

New package created in: my-awesome-tool. Starting template added and committed to git. Please continue
working on it.

Here is how the directory layout looks like:

my-awesome-tool
Dockerfile
main.nf
main.py
nextflow.config
pkg.json
tests

checker.nf
expected

expected.test_rg_3.bam
expected.test_rg_3_fastqc.out.gz

input
README.md
test_rg_3.bam

nextflow.config
test-job-1.json
test-job-2.json
wfpr_modules -> ../wfpr_modules

wfpr_modules -> ../wfpr_modules

Please note that the code for the new package resides on a new branch named as my-awesome-tool@0.1.0 (pattern:
<pkg_name>@<version>). Development should continue on this branch utill it’s merged into the main branch after
PR (pull request) creation and code review approval.

3.3.2 Implement the tool

In WFPM, all tools are required to have their executables containerized. Currently only Docker is supported. The auto-
generated Dockerfile starts from the specified base image, and copies the generated Python main.py script into the
image. These files are meant to give you a starting point to implement your own functionalities for the new tool.

You may build the Docker image locally or push the code to GitHub which will build the Docker image via GitHub Ac-
tions CI/CD script, for simplicity, the latter is suggested. Additionally, GitHub Actions CI/CD script also automatically
invokes tests.

3.3. Create a new tool package 13

WorkFlow Package Manager, Release 0.8.0

3.3.3 Write tests for the tool

The auto-generated test code should serve as a good start for you to implement your own tests. Tests are invoked by the
checker.nf script. Tests themselves are parameter files named with prefix: test-.

3.3.4 Create a pull request and start code review

Same as the common practice in software development, once the code is ready for peer review, a PR can be created
and a reviewer or reviewers may be assigned. Review comments should be addressed and all tests should pass before
the PR can be approved.

Continue on to Release a package section for the next step.

3.4 Create a new workflow package

Creating a new workflow package is very similar as that for a tool package described above. The major differences
include:

• workflow package usually imports tool packages for its processing steps.

• workflow package does not have directly assocated container images.

To create a new workflow package named as my-awesome-workflow, run:

wfpm new workflow my-awesome-workflow

Assume the new workflow package needs to run a QC step using the fastqc tool, we can specify a dependency
of the tool package we just built and released in the previous section. We may also take the advantage of the
helper-functions package released by ICGC ARGO to retrive secondary files. To import them to the new workflow
package, we specify two dependencies:

github.com/icgc-argo/data-processing-utility-tools/helper-functions@1.0.1
github.com/your-github-account/my-awesome-wfpm-project/my-awesome-tool@0.1.0

Below is how the summary of collected information may look like:

{
"full_name": "Your name",
"email": "you@example.com",
"pkg_version": "0.1.0",
"pkg_description": "My DNA Seq Processing Workflow",
"keywords": "bioinformatics, dna-seq, alignment",
"dependencies": "github.com/icgc-argo/data-processing-utility-tools/helper-

→˓functions@1.0.1, github.com/your-github-account/my-awesome-wfpm-project/my-awesome-
→˓tool@0.1.0",

"devDependencies": ""
}

The layout of the generated new workflow package directory my-awesome-workflow and installed dependency direc-
tory wfpr_modules may look as below:

my-awesome-workflow
main.nf

(continues on next page)

14 Chapter 3. WFPM CLI General Usage

https://github.com/icgc-argo/data-processing-utility-tools/releases/tag/helper-functions.v1.0.1
https://www.icgc-argo.org

WorkFlow Package Manager, Release 0.8.0

(continued from previous page)

pkg.json
nextflow.config
tests

checker.nf
expected

expected.test_rg_3.bam
expected.test_rg_3_fastqc.out.gz

input
README.md
test_rg_3.bam

nextflow.config
test-job-1.json
test-job-2.json
wfpr_modules -> ../wfpr_modules

wfpr_modules -> ../wfpr_modules
wfpr_modules

README.md
github.com

icgc-argo
data-processing-utility-tools

helper-functions@1.0.1
your-github-account

my-awesome-wfpm-project
my-awesome-tool@0.1.0

Similar to creating a new tool package, generated code for the new workflow package resides on a new branch named
as my-awesome-workflow@0.1.0. Please follow similar process as described in Create a new tool package section
to continue the development of the new workflow package.

3.5 Release a package

WFPM packages should only be released when the package code PR has been approved and merged into the main
branch.

The GitHub Actions script generated by the WFPM CLI tool provides a convenient feature for automated package release
creation. To take the advantage of this feature, when you merge the PR, in the box for comment you may type a special
instruction [release] to let GitHub Actions start the release process, as shown in the screenshot below. With this
GitHub will first merge the package branch to the main branch, then starts the release process, once tests are successful,
a release of the package will be made automatically.

Once a package is released, two files: release tarball and pkg-release.json will be generated and made avail-
able for download as release assets. More details on this can be found at Package releases section.

3.5. Release a package 15

concepts.html#package-releases

WorkFlow Package Manager, Release 0.8.0

3.6 Update an existing package

To update an existing package, for example, my-awesome-tool you may use the nextver command as:

wfpm nextver my-awesome-tool@0.1.0 0.2.0

With this WFPM CLI will start from the git commit referenced by 0.1.0 tag to create a new package branch named as
my-awesome-tool@0.2.0, update the version number from 0.1.0 to 0.2.0 in the pkg.json and main.nf files, and
lastly commit the changes to git. From here, you should follow a similar process as described in creating new packages
to continue the development and eventually release the updated package.

3.7 Switch between in-dev packages

You may have multiple packages in active development concurrently. To switch between these in-dev packages, you
may use the workon command.

The workon command may also be used to display statuses of all packages, for example, wfpm workon may give the
following output:

Packages released:
demo-aligned-seq-qc: 1.1.0, 1.0.0
demo-bam-merge-sort-markdup: 1.12.1, 1.12.0, 1.11.1
demo-bwa-mem-aligner: 1.22.0, 1.21.0, 1.20.2, 1.20.1, 1.20.0, 1.12.2, 1.12.1
demo-dna-seq-alignment-wf: 1.7.2, 1.7.1, 1.7.0, 1.6.0
demo-dna-seq-processing-wf: 1.7.2-1.3.2, 1.7.1-1.3.1, 1.7.0-1.3.0, 1.6.0-1.2.0
demo-utils: 1.3.0, 1.2.0, 1.1.0, 1.0.3, 1.0.2, 1.0.1, 1.0.0

Packages in development:
abc: 0.1.0

Package being worked on: <none>

To start working on the abc package, simply run:

wfpm workon abc

With that, the current branch will be switched to abc@0.1.0, you may now continue to work on it.

16 Chapter 3. WFPM CLI General Usage

	WorkFlow Package Manager - Overview
	Best practices for scientific workflow development
	ICGC ARGO workflow implementation
	Installation
	Prerequisites
	Install WFPM CLI with only a single command

	Demo use cases
	Demo use case 1: create and publish a demo tool package
	Demo use case 2: create and publish a workflow package
	Summary

	Basic Concepts
	About WFPM projects
	About packages
	About modules
	Package releases
	Permissible string patterns for artifact names
	Dependencies

	WFPM CLI General Usage
	WFPM CLI overview
	Initialize a WFPM project
	Create a new tool package
	Create starter templates
	Implement the tool
	Write tests for the tool
	Create a pull request and start code review

	Create a new workflow package
	Release a package
	Update an existing package
	Switch between in-dev packages

